Testing of Fuels in Fuel Cell Reformers

2003 Hydrogen and Fuel Cells Merit Review Meeting

Rod Borup, Michael Inbody, Jose Tafoya, Dennis Guidry, Will Vigil and Troy Semelsberger

Los Alamos National Laboratory

FY2003: Funding: \$1200k (Program Manager Nancy Garland)

divided between:

Fuels (Gasoline Component) Testing - (FY2002 \$300k)

Gasoline Reformate and H₂ PEM Durability

Diesel Reforming (SECA program)

Technical Objectives:

Examine Fuel Effects on Fuel Processor Performance and Durability

- Quantify fuel effects on performance and durability.
 - Fuel component, impurity, additive effects
- Examine fuel effects on fuel processor start-up
- Understand parameters that affect fuel processor and stack lifetime and durability.
 - Fuel processor catalyst stability and activity
 - Evaluate fuel effect and start-up effect on carbon formation
 - Identify chemical species limiting durability
 - Durability testing to evaluate long term performance
- Fuel Processor (& System) Targets:
 - Power density, specific power, cost
 - Cycle capability
 - Start-up Time (Barrier I)
 - Energy efficiency (Barrier M)
- Fuel Processor Barriers:
 - Durability. (Barrier J)
 - Fuel Pr. Start-up/Transient
 - Cost. (Barrier N)

(catalyst performance and loading)

(light-off, durability testing)

(light-off temperature and performance)

(fuel performance)

(durability and carbon formation studies)

(fuel effect on light-off)

(effect on catalyst loading and durability)

Fuel Cell Program

Los Alamos

Fuels Testing Timeline

Project initiated in 1999 / Fuels testing initiated 2000 Part of Multi-year-program-plan Fuels for Fuel Cells (5 yr) program

Approach to Fuels Testing

- Measure fuels effects in fuel reformers
 - Adiabatic, vehicle scale reformers
 - Catalytic partial oxidation / steam reforming
 - Gas phase partial oxidation / catalytic steam reforming
- Fuel reforming kinetics
 - Ease of partial oxidation / steam reforming
 - Fuel components, fuel impurities, fuel additives
 - Effect on light-off (fuel processor start-up)
- Measure Carbon formation
 - Fuel effect on steady state, startup and transient carbon formation
- Effect on fuel processor durability
 - Measure carbon formation
 - Hydrocarbon breakthrough

Adiabatic Reactor Testing / 'Vehicle' Scale

Catalytic

Partial Oxidation/Steam Reforming in situ Carbon Formation Laser Optics

> Reactor Window

Reference Beam

Reactor

Reactor Window

Gas phase partial oxidation

Fuel components testing with gas phase partial oxidation / catalytic steam reforming

(provided by Nuvera)

Relative Carbon Formation from Fuel Vaporization

Diesel fuel shows pyrolysis upon vaporization

- Diesel fuel reformers require
 - Direct fuel injection
 - Water to suppress carbon formation
- Directly inject fuel to reforming catalyst
 - Commercial fuel nozzle
 - Limited preheating of fuel/air
 - Prevents fuel vaporization/particulate formation
 - Carbon formation experiments under real conditions

Fuels During Gas Phase Oxidation

- Gas phase oxidation was easier with 'real' fuels
- Difficult to keep combustion with pure components iso-octane and iso-octane/xylene

- Adding dodecane to iso-octane simulated oxidation of fuel blends
- Addition of pentane shows essentially same results as isooctane.
- Addition of heavier hydrocarbons provides easier gas phase oxidation

Gas Phase Partial Oxidation of Fuels

Steam/carbon effect on fuel oxidation

Catalytic Partial Oxidation Stage

Aromatics slow oxidation and reforming

Longer Chained hydrocarbons also slow reforming kinetics

Higher Temperatures (O/C ratio's) are required for long chained hydrocarbon conversion for similar residence times – leads to H₂ dilution

- For full conversion of hydrocarbon fuels which include long chains, aromatic:
 - Either longer residence times required for similar conversion
 - leads to bigger reactor, more catalyst
 - Higher Temperature → O/C, which leads to inefficiency

Fuel Effect on Catalyst Light-off

Fuel Effect on Reactor Light-off

Fuel Effect on Gas Phase Reactor Light-off

Reactor light-off (ignition) can vary with fuel and fuel components:

For Gas Phase oxidation reactor ignition requires:

Iso-Octane: O/C = 1.2, at $S/C \sim 0.5$

RFG (gasoline): O/C = 1.0, at $S/C \sim 0.5$

Fuel Effect on Catalytic Reactor Light-off

- Fuel Composition Effects on fuel processor operation
 - Gas phase oxidation prefer high long-chained hydrocarbons
 - Catalyst oxidation prefer shorter chained hydrocarbons
- Light-off
 - oxygenated compounds speed light-off
 - straight-chained hydrocarbons ease light-off compared with branched
 - aromatics slow kinetic light-off
 - long chained hydrocarbons (diesel) slow light-off
- Light-off Temp. corresponds inversely to C-H or C-C Bond dissociation energy

Equilibrium Modeling

Equilibrium defines fuel processor operating conditions

At start-up of fuel processor, water availability is questionable (freezing conditions)

Avoiding zero equilibrium carbon will be difficult whether water is available or not.

At high S/C during start-up, during transition to carbon-free region - carbon formation kinetics appear low

Carbon formation during reactor light-off

Quantitative carbon measurements indicate carbon made during start-up for all fuels. Water during start-up suppresses some carbon formation, but carbon is still formed, in smaller quantities.

Ethanol suppresses carbon formation, while aromatics shower high carbon formation.

In situ laser measurement during light-off of fuel conducted at S/C = 0.0, and S/C = 0.5 for fuels including iso-octane, iso-octane/xylene, iso-octane/ethanol, iso-octane/dodecane, naptha, reformulated gasolines (RFG), RFG/ethanol, Iso-octane/dodecane and Iso-octane/pentane.

Temperature / oC

Carbon Formation Effect on Durability

- Carbon formation during operation and start-up
 - function of fuel composition, also O/C and S/C
- Carbon formed during start-up ~ 0.5 % to 3 % of carbon from fuel (for 30 sec)
- Normal operation at O/C = 0.75, S/C => 1.0, no measurable carbon
- Ethanol addition decreases carbon formation: 40 % (RFG) to 80% (Iso-Octane)
- Durability targets 5000 hrs. (# start-ups 4,000 10,000 cycles (drive cycle))
 - RFG (4,000 cycles) forms 1.0 kg carbon
 - RFG (10,000 cycles) forms 2.5 kg carbon
- Post-catalyst analysis does not show carbon poisoning noble metal catalysts
 - carbon typically moves down stream in system
- Carbon formation with nickel catalyst tends to remain in ATR

Low Temperature Reforming Fuels Support of portable power

 $\frac{\text{MeOH (Methanol)}}{\text{H}_2\text{O/MeOH} = 1.5}$

Space Time = 0.5 sec

DME (DiMethylEther)

S/C = 2.5

Space Time = 0.5 sec

Full conversion of MeOH at \sim 200 – 220 °C (\sim 10,000 GHSV)

TON at ~ 220 °C 8.5 per min (based on CO adsorption sites)

Full conversion of DME at 360 – 380 °C

2002 Fuel Cell Review Comments

-Not clear that results show 'durability' – instead appear to provide valuable insight into transient response. Can effect of shut-down overshadow long-term 'normal' ATR Operation?

Believe that the short term effects are durability effects – these 'transient' effects can be significant during start-up, shut-down and potentially overshadow long-term operation.

- Unclear how iso-octane can provide knowledge addressing durability issues why is 'normal' gasoline not used for tests?
- Important to address issues of effect of normal gasoline on whole system
- Use 'real' reformate & publish results

We are using various components, including gasoline

- In-situ method is an excellent approach – however work presented appears to provide durability during transient behavior, not necessarily long-term operation.

We use in situ measurements define short term fuel effects to extrapolate to durability. We also do long-term operation to define durability. Durability system operates with adiabatic reactor, with HTS/LTS, PrOx and slip stream to PEM cells. Hydrocarbon breakthrough in ATR limits durability

Interactions/Collaborations

- National Technical Presentations/Publications
 - AIChE, ACS, SAE
- Delphi Automotive
 - − discussions (~ reactor design, testing, diesel)
- CRADA Interactions
 - Motorola (MeOH SR)
- Haynes International (reformer materials)
- Phillips Petroleum
 - providing fuel for testing, additives, fuel formulations
- Catalysts (for fuel reforming (gasoline, diesel, MeOH), Durability)
 - -Univ. Alabama, Engelhard, Delphi, Süd-Chemie, Johnson Matthey

2002 - 2003 Milestones

	Gasoline
May 2002	500 - 1000 hrs of operation durability in adiabatic reactor
September 2002	Carbon formation with detergent additives
June 2003	Comparison Measurements of carbon formation effect at start-up and light-off for 4 fuel components and 2 fuel
September 2003	Measurement of sulfur effect on carbon formation
	Methanol
December 2002	Relative reaction rate evaluation of 4 existing methanol steam reforming catalysts
July 2003	Kinetic rate expression development for Methanol steam reforming catalyst
	Diesel (SECA Program)
December 2002	Direct Fuel Injection/Air Mixing Demonstration
March 2003	Multiple Regeneration Cycles Removing Carbon From Catalytic Partial Oxidation
September 2003	Carbon Formation Kinetics Rate Expression Development

Summary/Findings

- ATR of Fuel Components
 - Catalytic vs. gas-phase
 - gas-phase oxidation favors 'real' fuel mixtures and higher hydrocarbons
 - Steam input has large effect on gas phase oxidation, small on catalytic
 - Catalytic oxidation favors short-chained aliphatic hydrocarbons
 - •Aromatics/long-chained HC's have lower catalytic kinetics
- Fuel Effect on Reactor Light-off
 - Homogeneous
 - high steam content slows light-off
 - Catalytic
 - oxygenated, straight-chained HCs speed light-off
 - aromatics, branched chained slow light-off
- Carbon Formation
 - Monitoring carbon formation during the start-up transient
 - Aromatics show highest tendency for carbon formation
 - Oxygenates help suppress carbon formation during light-off

Future Plans

• Remainder of FY 2003:

- Carbon formation:
 - Sulfur effect on carbon formation
 - Oxidative regenerative of catalyst
- Fuel reforming and hydrogen fuel cell durability testing
 - Implement drive cycle testing into durability testing

• FY 2004:

- Hydrogen / gasoline reformate durability comparison
 - Implementation of drive cycle including start-up cycling on fuel processor
- Carbon formation fundamentals
 - Kinetic expressions and mechanistic studies of carbon formation
- Strategies for controlling carbon formation
 - Avoidance and minimization of carbon formation
 - Oxidative regeneration of catalyst
- Characterization of start-up emissions
 - Contaminant and hydrocarbon breakthrough

